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The free energy of the classical Heisenberg model with 
anisotropic interactions 

J Rae 
Department of Physics, Queen Mary College, Mile End Road, London El  4NS, UK 

Receivdd 14 March 1974 

Abstract. Exact expressions are given for the free energy of the classical Heisenberg model 
in one lattice dimension and two or three spin dimensions with general anisotropy; the two- 
dimensional result, already known, is in terms of Mathieu functions and the three-dimensional 
result in terms of Lame wavefunctions. The method presented solves the eigenvalue problem 
for an appropriate transfer matrix by relating it to solutions of the Helmholtz equation in 
suitable curvilinear coordinate systems. High and low temperature limits are discussed for 
the three-dimensional spin case and the connection given with already known results for 
partial anisotropy. 

1. Introduction 

The classical Heisenberg model consists of a one-dimensional lattice of N unit dipoles, 
each dipole being allowed to point in any direction in an n-dimensional vector space and 
each interacting with only its nearest neighbours. The hamiltonian for this classical 
system may be written 

N 

HN = - 1 ( J l x l ( i ) x , ( i +  1 ) + ~ , x ~ ( i ) x , ( i +  I ) +  . . . +J,x,(i)x,(i+ 1)) ( I )  
i =  1 

where xj ( i )  indicates the jth direction component of the ith dipole and the J j  are interac- 
tion constants. The partition function and correlation functions for systems of this type 
have been investigated by several authors : for n = 2 by Joyce (1967a), for n = 3 and two 
of the J's  taken equal by Joyce (1967a) and Thompson (1968) and for general values 
of n with all J 's  equal by Stanley (1969) and Stanley et a1 (1970). 

For a line of N dipoles of which the Nth has components x , ( N ) ,  . . . , x, (N)  the par- 
tition function is 

where dQi is the surface element of the unit sphere for the ith dipole vector ( x l ( i ) ,  . . . , 
x,(i)), D the corresponding total surface area and v = l/kT, Tbeing the temperature. The 
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corresponding expression for N + 1 dipoles is related to the above by 

the integral being taken over the unit sphere. This operator is of Hilbert-Schmidt type 
so that its eigenvalues are real and, with the usual inner product, there is a complete 
orthonormal set of eigenvectors. Further, the kernel in (2) is positive so by Jentzsch’s 
theorem (Jentzsch 1912) there is a simple positive maximum eigenvalue and this is an 
analytic function of v and J1,. . . , J,. This analogue of the Perron-Frobenius theorem 
underlies the usual proofs that a one-dimensional system such as (1) cannot have a 
thermodynamic phase transition at finite temperatures (Munster 1969). A knowledge of 
the eigenvalues ,lo, I l  , . . . of 2 and of the corresponding eigenvectors allows calculation 
of the partition function and correlation functions. In particular, the partition function 
for N dipoles with cyclic boundary conditions is given by 

In the thermodynamic limit only the maximum eigenvalue I o  contributes and the free 
energy is given by 

(3) 
1 

N - w  N 
- vf(v, J1,. . . , J , )  = lim -In ZN = In 2,. 

It seems impossible to solve the eigenvalue problem for 6p in the general case but by 
establishing a connection with Helmholtz’s equation we are able to present below the 
solutions for n = 2 and n = 3. In $ 2 we illustrate the argument for the case n = 2 where 
the results are known in terms of Mathieu functions (Joyce 1967a) and $ 3 carries through 
the same procedure for n = 3 where the appropriate functions are Lame wavefunctions. 
Since the latter model includes some known special cases, various limiting forms and 
high and low temperature expansions are outlined in $4.  Finally, we summarize the 
results obtained and the difficulties in proceeding further. The main properties of Lame 
wavefunctions are collected together in an appendix. 

2. The planar model (n = 2) 

The eigenvalue equation for 9 in the case n = 2 may be written from (2) as 

1 g exp V(JlXX’+ J,yy’)h(x’, y’) = 2h(x, y) .  (4) 
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We denote the kernel by W = exp v(J,xx’+ J2yy’)  and without loss of generality assume 
J:  2 J : .  Putting < = J1x ,  q = J 2 y  we have 

a2w a2w 
-+7 = v2(x’2+y’2)W = v2w. at2 a~ (5) 

As x, y vary over the unit circle x2 +y2 = 1 the variables <, q vary over an ellipse so it is 
reasonable to introduce elliptic coordinates (Abramowitz and Stegun 1965) 

5 = p cosh U COS v q = p sinh U sin U (6) 

corresponding to 

x = COSU 

y = sin U 

J l  = pcoshu 

J 2  = psinhu. 
(7) 

We take 0 6 U 6 271. and allow p, U all real values to cover the possible values of J ,  , J 2  . 
In terms of these variables equation (5) becomes 

a2w a2w 

a u 2  av 
-++-~p2v2(COSh 2 ~ - C O S  2v)W = 0 

and assuming solutions of the form W = f (u)g(v) one obtains 

_- d2f (a ++v2p2 cosh 2u) f = 0 
du2 

d2g - + (a + i v 2 p 2  cos 2u)g = 0 
du2 (9) 

where a is a separation constant. Equation (9) is Mathieu’s equation and (8) Mathieu’s 
modified equation (we follow the notation of Abramowitz and Stegun 1965, chap 20). 
For the solution of (9) we want periodic functions and this determines the values of a 
as Sturm-Liouville eigenvalues. The solutions are 

n = 0,1,2, . . .  
n = 1,2, . . .  

1 2 2  ce,(u, -TP v ) 

se,(v, -$p2v2)  

with corresponding eigenvalues a = a,, a = b, given in Abramowitz and Stegun (1965, 
Q 20.2.26). Now (8) must be solved with these values of a. Corresponding to a,, b, 
the solutions are of type Ce,(u), Se,(u) respectively (we drop for the moment the second 
Mathieu parameter which here is always - $p2v2). It follows that W may be expanded in 
the form 

W = rrCer(u)er(v) + firSer(u)ser(v) * 
r = O  r = l  

Exactly the same procedure may be carried out in terms of x’, y’ in place of x, y but 
keeping the same J ,  , J 2  and hence the same p, U. This gives an expansion of W of the 
form 
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where a,, p, are now independent of U, U, U'. Now the functions ce,(u), se,(u) form a com- 
plete orthogonal set for the interval 0 < U < 2.n with orthogonality relations of the type 

ce,(u)ce,(u) du = .n&. 

From (4), (10) and (11) it follows that ce,(u), r = 0,1, .  , , and se,(u), r = 1,2 , .  . . are a 
complete set of eigenfunctions for our operator f and that the corresponding eigenvalues 
are &xrCe,(u) and )p,.Se,(u) respectively. There remains only to find explicit values for 
or,, 8, and this is done most easily by choosing special values of the variables in (IO). 
For example, by putting U = 0, U' = %, multiplying by cezs(u) and integrating, we obtain 

From the general properties of Mathieu functions (Abramowitz and Stegun 1965) this 
gives our eigenvalue in the form 

where Mc'" is a tabulated modified Mathieu function. In a similar way the other eigen- 
values can be found and the complete list is (iyMc!')(u), r = 0, 1 . . . and (i)rMs:l)(u), 
r = 1,2, . . . .  

Since by Jentzsch's theorem the maximum eigenvalue must remain non-degenerate 
even for v + 0 it is clear that this eigenvalue is McL"(u, -gpzv2). These results have 
already been obtained by Joyce (1967a) who outlined some of their consequences so we 
will discuss them no further in this article. 

3. The free energy of the Heisenberg model (n = 3) 

When the dipoles are allowed to orientate themselves in a three-dimensional space 
(n = 3) the 'transfer matrix' f of (2) has an eigenvalue equation of the form 

1 exp[v(uxx' + byy' + Czzr)]h(x/, y', z') = Ah(& y, z) 

the integral now being over the surface of the unit sphere. In this case we write the kernel 
W = exp v(uxx'+byy'+czz') and assume, without restriction, that uz 2 b2 2 c2 .  If we 
now put 4 = ax, q = by, [ = cz we again arrive at the Helmholtz equation 

a2w azw a2w 

at2 = v 2 ( x ' ~ + y ' ~ + z 1 ~ ) W  = v2w. 

As x, y, z vary over the surface of the unit sphere t, q, [ vary over the surface of an ellipsoid, 
so it is reasonable to introduce confocal ellipsoidal coordinates a, p, y related to <, q, ( 
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by (in the notation of Erdelyi et a1 1955) 

5 = k2(a2 - c2)1/2sna snp sny 

q = - -(a2 - c2)'l2cna cnp cny 
k2 
k' 

i 
k [ = ,(a2 - c2)'/2dna drip dny. 

Here k2 = (a2 -b2) / (a2  -c2), k" = (b2 -c2) / (a2  -c2), 0 < k < 1 and the jacobian 
elliptic functions are all of modulus k. If a varies between iK' and K + iK', p between 
K and I( + 2iK' and y from 0 to 4K there is a one-to-one correspondence between the 
curvilinear coordinates a, p, y and the Cartesian <, q,  [ (K and K' are the usual complete 
elliptic integrals). 

In terms of these coordinates the equation (14) becomes 

a2w 

a$,y cyclic au2 
2 (sn2p-sn2y)- = - v2k4(a2 -c2)(sn2u - sn2p)(sn2#?-sn2y)(sn2y -sn2a)W. 

Assuming a solution of the form A(a)B(j)C(y) we have 

(s +rk2sn2a + 12v2k4sn4a)A = 0 (16) 

and two other equations of this kind for B(P) and C(y) all involving the same separation 
constants s, r and having l 2  = a' -c2.  The solutions of interest here (see Erdelyi et al 
1955, 9 15.1.1.) are doubly periodic and this determines the allowed values of s and r. 
The solutions themselves are ellipsoidal wavefunctions : these functions have been little 
studied but we collect some relevant known results in an appendix which the reader 
should consult for notation and references. From (16) it is reasonable to look for an 
expansion of the kernel in the form 

d2 A 
da2 
-- 

W = ar,n,melr(a)el:(p)eI,m(y) 
r ,n,m 

where in each term the three ellipsoidal wavefunctions in the product are precisely the 
same, and where the summation is over all eight types of function (say t = 1,.  . . , 8 )  and 
over n = 0, 1,2,, . . and the appropriate range of m for each n. Now this expansion is in 
terms of variables (15) which we may rewrite as 

x = k snp sny a = kl snu 

b = ikl cnu (17) 
. k  
k' 

y = I-cnpcny 

1 
k 

z = ,dnpdny c = ildna 

(CY now takes any value appropriate to the magnitude and sign of a, b, c) but we could 
just as well have expanded in terms of primed variables 5' = ax', x' = k snp' sny', etc. 
In this way, just as in (lo), we obtain 
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where each term is now a product of five identical ellipsoidal wavefunctions and the 
sum is over all eight types and all indices appropriate to each type. The coefficients b, 
which are independent of a, p, B’, y, y‘ ,  are more difficult to evaluate than in the case of 
Mathieu functions. 

In going over to coordinates (17) the spherical surface element do ’  becomes 
ik2(sn2y’- sn2/3’) dp’ dy‘ so in view of the orthogonality properties of elp(8, y) (see ap- 
pendix (A.3)) it is now apparent that the eigenfunctions of kp expressed in the new 
coordinates are simply all the ellipsoidal surface wavefunctions elp:(P, y) and the 
corresponding eigenvalues, obtained from the appropriate term of (1 8), are 

By Jentzsch’s theorem the maximum eigenvalue must remain non-degenerate in the 
limit v -, 0 in which the functions elp(8, y )  go over to products of Lame polynomials; 
the properties of the latter show that the eigenfunction with maximum eigenvalue is, in 
full notation, uelp:(B, y). To obtain the corresponding eigenvalue we need to know the 
appropriate coefficient b in series (18) and, as in 9 2 ,  this can be done by choosing special 
values for the variables. We put a = K+iK’, B = K ,  y = 0 so all terms in (18) vanish 
except those involving only the functions uelTn. Thus 

m n  

1 = C 1 b 1 ,2n,muelTn(K + iK’belpT,,(K, o)uelpT,,(B‘, y’h 
n = O  m = O  

If this is multiplied by (sn2y’ - sn2p’)uelpTn(B’, y’) and integrated over S then by (A.3), 
(A.5) we obtain 

- ib1,2n,mue1Tn(K + iK’)uelpTn(K, 0) 

= If (sn2y’ - sn2P’)elpTn(B‘, y’) dp’ dy’ = -iA: 
S 

where A: is the first coefficient in the expansion of uelp;,, in a series of type (A.4). In 
particular, the maximum eigenvalue ,lo is given by n = m = 0 

A 
uel;(K + iK’)uelp:(K, 0) 

uelE(cr) 

where A is now the first coefficient in the expansion of uelp:. The result (20) is to be 
compared with (12) and leads to an exact expression for the free energy (3) of the 
Heisenberg model for n = 3. 

4. High and low temperature series and limiting cases 

The exact solution obtained in the preceding section involves ellipsoidal wavefunctions 
about which not a great deal is known. Some explicit information is available however 
for large and small values of v which correspond to low and high temperatures respec- 
tively. Further, if two of the interaction parameters a, b, c are put equal in (13) the 
expressions in 0 3 ought to reduce to known results in terms of simpler functions. We 
now discuss these topics in turn. 
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A series expansion of uel: appropriate for small values of v is given in (A.6) and this 
may be inserted directly for the ellipsoidal wavefunctions in (20). By inserting (A.6) 
into (A.5) a suitable series is also obtained for the constant A occurring in (20). A con- 
siderable amount of tedious but elementary algebra is needed in simplifying the result 
and we merely quote the final answer: 

lo = 1 + e,12v2 + e214v4 + e316v6 + 0 ( v 8 )  (21) 
where 

k2sn2a (1 + k2) 
6 18 

k4sn4a k2(1 + k2)sn2a 67k4 - 22k2 + 67 

e ,  = 

16200 
+ e2 = -- 

120 180 

k6sn6a k4(l + k2)sn4a (83k4 -38k2 + 83)k2sn2a 
226 800 

e3 =-- + 
5040 5040 

(3037k4-2038k2 + 3037)(1+ k2) - 
14 288 400 

The low temperature case is not so easily disposed of as the existing asymptotic series 
of el(z) for large v all break down at certain transition points such as z = K in the complex 
plane. The dominant term, however, can be obtained by using only the leading term in 
the asymptotic expansion of uelE(z) which for z in the ranges 0 to K and K to K +iK’ 
is given by (Arscott and Sleeman 1970) 

uel;(z) - constant x exp(vlksnz)(l + ksnz)- li2(l +snz)-li2. 

This form is substituted into the eigenvalue equation (13) which according to 6 3 can be 
written 

exp( ~ ( k 3 k ’ 2 s n ~ s n ~ s n y s n ~ ’ s n y ’ - i k 3 c n a c n ~ c n y c n ~ c n y ~ + i d n a d n ~ d n y d n ~ ’ d n y ~ )  

8ni 
k2 x (sn2y’ -sn2/?’)uelp@’, y’) db’ dy’ = --A uelpE(p, y).  

With y = K ,  p = K+iK’ this simplifies to 
r r  

J J exp[vk21snasnp’ sny’] (sn2y’ - sn2fi‘)uelp@’, y ’ )  dp’ dy’ 
S 

8ni 
k2 

= - -1 uelp:(K + iK’, K ) .  

The leading term of the left-hand side for large v is easily evaluated by the method of 
steepest descent and is found to be 

- 4ni exp(lvlksna1) 
vlk2(1 + ksna)’”(k + ksna)’I2 

uelpE(K + iK’, K).  



1356 J Rae 

Expression (23) in conjunction with equation (22) provides the dominant behaviour of 
the maximum eigenvalue for large v 

exp(vlklsna1) 
2vl( 1 + ksnct)”2(k + ksncr)”2 

A0 N 

This leads to an energy per dipole 

V 

The energy at T = 0 is just what is expected for a hamiltonian of the form (1). If a is 
positive and of greatest magnitude, there are two zero temperature dipole states, with all 
dipoles pointing in the + x or all in the - x directions ; if a is negative the two antiferro- 
magnetic ground states have the dipoles pointingalternately in the + x and - x directions. 

Next we examine the possibility of having two of the interaction strengths equal. 
From (17) it appears that the case a = b requires k = 0 while b = c requires k = 1 ; we 
carry through the details only for the first of these, the oblate case, and for simplicity 
assume a, b, c all positive so that a may be taken to vary in the range iK’ to iK’ + K .  
As k + 0, K + while K’ + 00 ; we therefore change variables from a to U = a -iK‘ 
and take the limit k -, 0 holding U fixed. A simple calculation gives 

a = k l  sna + 1 cosec v 

b = ikl cna + 1 cosec v 

c = i ldna-  lcotv 

0 < v < 3.. 

We may now compare this with the approach of Joyce (1967a) and find that the two 
notations are related by J ,  = 1/(2 sin v )  and tanh p = cos v .  From our appendix we 
have that the function uelg(P, v212) occurring in the maximum eigenfunction reduces as 
k -, 0 to Ps:(x, -vZl2)  and this is in accord with Joyce’s Soo(2J,/kTcosh p ,  x); the other 
functions go over to spheroidal wavefunctions in a similar fashion. Further, one may 
check quite easily that for k = 0 the high temperature series (21) becomes that given by 
Joyce (1967b) and the low temperature result (24) agrees, as far as it goes, with the 
expressions given by Joyce (1967a) and Thompson (1968). 

5. Conclusions 

In the preceding sections we have obtained, in terms of ellipsoidal wavefunctions, exact 
expressions for the eigenvectors and eigenvalues of a transfer matrix for the general 
n = 3 classical Heisenberg model and hence an expression for the free energy of this 
system. Although not much is known about these functions some explicit information 
can be extracted in the high and low temperature limits and this was given in 0 4. It is 
interesting that such complicated functions arise in an apparently simple problem ; 
these ellipsoidal wavefunctions are about the most complicated special functions that 
have been studied and this fact suggests that the method used in this article will be 
impracticable for more complicated models. For n > 3 appropriate functions have not 
yet been studied and the method will work only in the special case where all the interac- 
tion constants are equal, when it will reproduce the results of Stanley (1969) for general n. 
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No exact results have ever been obtained for a classical Heisenberg model with a 
magnetic field except in the Ising case n = 1. If the present method is followed in, for 
example, the isotropic n = 2 case one is led very naturally to consider the bipolar co- 
ordinate system. It is perhaps significant that the Helmholtz equation is not separable 
in these coordinates and the method will not carry through. 

It appears then that although the method presented in this article disposes of the 
n = 2 and n = 3 cases it does not offer much hope for a solution of more complicated 
Heisenberg models. It may however be applicable to other types of models. Finally we 
may remark that in finding the free energy we have not fully exploited the information 
available from the eigenvectors and eigenvalues in the case n = 3 ; we may for example 
hope to obtain some properties of correlation functions. Although the analysis involved 
in this has proved rather complicated we hope to present it in a future publication. 
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Appendix. Ellipsoidal wavefunctions 

Ellipsoidal or Lame wavefunctions are the uniform doubly-periodic solutions of the 
differential equation (16) which we now write in the notation 

(a + bk'sn'z + qk4sn4z) W = 0. (A.1) 
d2W 
dz2 
-- 

After the initial study of these functions by Moglich (1927) and Malurkar (1935) little 
more appears to have been done until Arscott (1964) revived the subject about 1955. Here 
we follow Arscott's notation and classification scheme. The ellipsoidal wavefunctions 
are all of the form 

el(z) = sn'(z)cnr(z)dn'(z)F(sn2z) 

where 1, p, v may be either 0 or 1 and F is an integral function of its argument. Accordingly, 
they can be classified under eight types by their parity at z = 0 and their periods. The 
symbols el(z) or el:(z) denote any ellipsoidal wavefunction and the eight types are pre- 
fixed by one or more of the letters U, s, c, d as shown in table 1. With the indices labelled 
as below n runs over the non-negative integers and rn takes, in all cases, the values 0, 
1,. . . , n. 

Table 1. Types of ellipsoidal wavefunctions. 

Type Parity Periods Type Parity Periods 

uel';, even 2K, 2iK' scel';,., odd 2K, 4iK' 
se]';,. , odd 4K, 2iK' sdel';,., odd 4K, 4iK' 
ceG, + I even 4K, 4iK' cdel'& + , even 4K, 2iK' 
del';,. , even 2K, 4iK' scdel;,,, odd 2K, 2iK' 
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These functions exist for all real values of q and suitable q-dependent values of a, b 
and are in one-to-one correspondence with the Lame polynomials to which they reduce 
when 4 = 0. A product el(P)el(y) where el denotes precisely the same function is 
abbreviated to elp(fi, y) with, if necessary, prefix and indices as above. Functions elp of 
different types or with different indices are orthogonal and are normalized so that when 
the left-hand side is nonzero we have 

where S denotes the field of integration y from - 2K to 2K, P from K - 2iK' to K + 2iK' 
and E is & 1 accordingly as cn z is or is not a factor of el(z) (thus c = ( - l)"", ,U as in A.2). 

Many of the properties of ellipsoidal wavefunctions have been obtained by the use 
of certain integral equations. In this way Moglich (1927) found expansions of elp in 
terms of spherical surface harmonics and of el in Legendre functions of argument dnz 
and also in spherical Bessel functions; similarly Arscott (1959) derived an expansion in 
terms of Lame polynomials and this is the only one we will write out here. If we denote 
Lame polynomials by the general symbol E(z) and adorn this in a manner consistent 
with that used above for el(z) (thus limq-o uel';,(z) = uE';,(z), etc) the expansion for 
uelp&(B, y )  is written 

m n  

and similarly in the other cases. The coefficients A, dependent on N ,  M ,  q and the type, 
are determined by a three-term recurrence relation in which the terms are matrices, 
which renders this vastly more complicated than the Mathieu case. On multiplying 
(A.4) by (sn2y - sn2fl)uEp;(P, y )  and integrating over S orthonormality of Ep (Arscott 
1959) gives the useful result 

(sn2y - sn2P)uelpE;"(P, y) dfi dy = - iA8 
S 

By working directly with the differential equation (A.l) both Malurkar and Arscott 
have obtained series expansions of el(z) for small values of q (Malurkar 1935, Arscott 
1956) and asymptotic expansions for large 4 (Malurkar 1935, Arscott and Sleeman 
1970). The low q expansion for uel:, adjusted to present normalization, may be written 

k2sn2z k4sn4z k2(1 + k2)sn2z +"( 120' 270 
-- 

k6sn6z k4(l  +k2)sn4z k2(l  -4k2 +k4)sn2z - 
+43( 2 4 .  Y .  5.7' 22 .  33.  5 . 7  3 5 . 5 . 7  

This series converges for small 4 but the radius of convergence is not known. The high q 
expansions given in the literature contain a number of errors and in any case provide 
series which are not valid in the neighbourhood of points such as z = 0 needed in (20); 
they are not used in this article. 

Finally we mention that in the limits k + 0 and k + 1 the ellipsoidal wavefunctions 
go over to spheroidal wavefunctions (Moglich 1927, Sleeman 1967). We illustrate this 
connection for uel'&(P ; q, k2) with q =- 0 and p as in 6 3. As k + 0, K' + CO so we change 
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to an appropriate real variable q given by iq = B - K - iK' ; q then varies from - K' to 
K'. By using properties of elliptic functions it is easy to see 

lim k sn(& k) = lim dn(q, k') = sech q 
k-+ 0 k- 0 

so that for k = 0 equation (A.l) has become 

d2 W 
- + [ (a+ b + q )  - (b + 2q) tanh'q + q tanh4q] W = 0. 
d?* 

The further change of variable x = tanh q reveals this to be the spheroidal wave equation 
(Arscott 1964). The function uelTn(/3) has 2(n -m) zeros in ]K, K + 2iK'[ so its limit must 
have 2(n -m) zeros in - 1 e x e 1. This shows that as k -+ 0 uelTn(B; q, k 2 )  goes over to 
the oblate angular spheroidal wavefunction Ps;:(x, - q)  with appropriate normalization. 
Since the functions uel have the general property uelT,(q ; - q,  k") = uel;;"(B ; q, k 2 )  
the above result also implies that as k -, 1, uelTn(B ; q, k 2 )  reduces to the prolate angular 
function Ps$I:-"')(x, 4). In a similar way uel(a),.uel(y) reduce to radial wavefunctions and 
trigonometric functions respectively. 
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